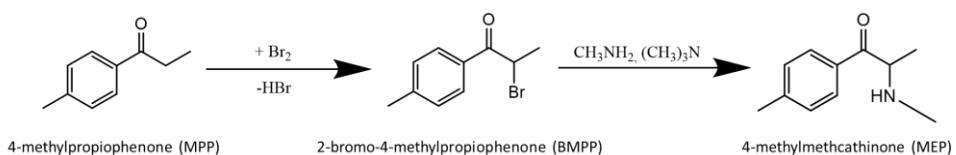


Identification of Mephedrone Synthesis Reagents using CEMs


Iwona Biel^{1,2}, Katarzyna Czyżowska¹, Paulina Kraus¹, Paweł Mateusz Nowak¹, Michał Woźniakiewicz¹

¹Laboratory for Forensic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland,

²Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków,
Poland, *i.biel@doctoral.uj.edu.pl*

Summary

One of the most commonly used synthetic cathinone is 4-methylmethcathinone (mephedrone, MEP) [1]. There are several synthesis pathways for mephedrone but the production of MEP from 4-methylpropiophenone (MPP) is most commonly used because this primary precursor is commercially available over the Internet, and the synthesis does not require complex and professional laboratory equipment. Interestingly, mephedrone could theoretically be used in the synthesis of pseudoephedrine (PEP) or ephedrine (EP), as it was speculated [2].

Fig. 1. Synthesis of mephedrone from commercially available substances.

This work aimed to develop an approach for the identification of these substances by combining two methodologies - CE-DAD and CE-C⁴D. The analytes can be classified based on their chemical structure, with some being neutral (MPP and BMPP), while others have the potential to ionize in a solution (methylamine - MA, trimethylamine - TMA, EP, PEP, and MEP) or absorb radiation in the UV range (MPP, BMPP, MEP, EP, and PEP). To accommodate these differences, two distinct methods have been proposed. These include a portable capillary electrophoresis system with C⁴D detection and a commercial, bench-top capillary electrophoresis system. The results demonstrated successful methods optimization, with peak resolution for EP, PEP, and MEP achieved under specific background electrolyte conditions (CE-C4D: BGE M; CE-DAD: BGE U). The method's repeatability was evaluated, and it showed satisfactory intra-day and inter-day precision for MEP, EP, and PEP for both methods combined into the efficient qualitative protocol for mephedrone profiling.

Acknowledgement

The research has been supported by a grant from the Faculty of Chemistry under the Strategic Program Excellence Initiative at Jagiellonian University. The authors are grateful to the group of Doc. RNDr. Petr Kubáň, Ph.D. (IAC, Brno, Czech Republic) for support in the construction of an in-built CE-C⁴D system. The study was carried out using research infrastructure funded by the European Union in the framework of the Smart Growth Operational Programme, Measure 4.2; Grant No. POIR.04.02.00-00-D001/20, "ATOMIN 2.0 – Center for materials research on ATOMic scale for the INnovative economy".

References

[1] European Monitoring Centre for Drugs and Drug Addiction, European drug report 2022 – Trends and developments, Publications Office of the European Union, 2022.

[2] European Monitoring Centre for Drugs and Drug Addiction, Europol, Europol-EMCDDA joint report on a new psychoactive substance: 4-methylmethcathinone (mephedrone)., European Monitoring Centre for Drugs and Drug Addiction & Europol, Lisbon, 2010.